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Radiation Laboratory
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The University of Michigan

Ann Arbor, Michigan 48109-2122

Abstract-The diffraction problem associated with a multilayer material slab re-

cessed in a perfectly conducting ground plane is formulated and solved via the

Generalized Scattering Matrix Formulation (GSMF) in conjunction with the dual

integral equation approach. The multilayer slab is replaced by a surface obeying a

generalized impedance boundary condition (GIBC) to facilitate the computation

of the pertinent Wiener Hopf split functions and their zeros. Both E, and Hz

polarizations are considered and a number of scattering patterns are presented,

some of which are compared to exact results available for a homogeneous recessed

slab.
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1 Introduction

V
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More sophisticated fabrication techniques and design methodologies have lead

to a greater utilization of microstrip antenna devices with multilayer substrates.

When these appear on airborne vehicles (e.g., as part of a flush-mounted antenna

configuration), their scattering properties become important.

The scattering of a microstrip configuration may in general be understood

through a characterization of the scattering substructures which comprise it. In

this paper we investigate the plane wave diffraction from one such substructure,

the multilayer semi-infinite slab recessed in a perfectly conducting ground plane

(figure la). To the authors' knowledge, this problem has not yet been attempted.

However, several researchers have considered the special case where the slab is ho-

mogeneous [Pathak, 1979; Volakis and Ricoy, 1989; Ricoy and Volakis, 1989a]. A

common feature of these analyses, though, is a requirement to solve for the fields

internal to the dielectric, making them cumbersome and impractical to implement

in the case of the multilayered slab.

The difficulty in working with the internal fields is alleviated here-in by repre-

senting the multilayer slab as a surface characterized by a plane wave reflection

coefficient R(cos¢o) (see figure lb), where ¢o can be extended through analytic

continuation in the complex plane. This enables us to carry out the analysis in

a symbolic manner regardless of the inhomogeneity profile of the layer. Hence,

although our focus in this paper is the multilayer recessed slab, the derivations

will be applicable to any vertically inhomogeneous slab.

The problem herein is formulated via the dual integral equation approach [Clem-

t
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mow, 1951] in conjunction with the generalized scattering matrix formulation

(GSMF) [Pace and Mittra, 1964]. The GSMF is applied to the recessed stub struc-

ture of figure 2a, depicting a perfeclty conducting half plane elevated a distance 6

above a reflecting surface with a perfectly conducting stub recessed a distance d

away from the half plane edge. This formulation requires the solution to a number

of individual subproblems. As illustrated in figures 2b-f, they correspond to the

problems of direct diffraction, mode coupling, mode reflection, and mode radia-

tion. Once solutions to each of these subproblems have been obtained via the dual

integral equation method, they can be combined in accordance with the GSMF

prescription to yield the diffraction for the original structure in figure la.

Unfortunately, the conversion of the symbolic solution into one of practical use

proves to be a formidable task when the reflection coefficient of the grounded slab

is obtained in its exact form. The fundamental difficulties are related to:

• the factorization or splitting of the associated Wiener Hopf functions into

components regular in the upper and lower half complex plane, and

• the extraction of the complex zeros (i.e., the waveguide modes) associated

with the split functions.

The pertinent Wiener Hopf functions cannot be factored analytically and one must

therefore resort to a numerical scheme (e.g., see Ricoy and Volakis [1989a]). Also,

in solving for the complex roots of the pertinent split functions, it is necessary to

employ a search algorithm in the complex plane, a process which is numerically

intensive. We circumvent these difficulties by replacing the grounded slab by an

V
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opaque sheet satisfying a generalized impedance boundary condition (GIBC) [Karp

and Karal, 1965]. The GIBCs involve higher order derivatives of the normal surface

fields and reduce to the standard impedance boundary condition when only the first

normal derivative of the field is kept. They have been shown to provide accurate

simulations of thick coatings and in general their accuracy is analogous to the order

to the condition (equal to the highest derivative retained). Their derivation has

been discussed in Rojas and Al-hekail [1989], Senior and Volakis [1989], Bernard

[1987], Volakis and Senior [1989], Volakis and Syed [1989] and Ricoy and Volakis

[1989b], and amounts to the specification of the constants multiplying the field

derivatives so that the impedance sheet simulation of the grounded slab yields a

reflection coefficient that best approximates the corresponding exact one. This

approximate reflection coefficient is cast as a ratio of polynomials in cos ¢ or sin 5,

making the determination of the complex poles and zeros of the reflection coefficient

a simple task. As a result, the required Wiener Hopf factorizations can be obtained

analytically leading to computationally efficient solutions.

In the first part of the paper we summarize the GSMF procedure. The dual

integral equation method is subsequently employed to formulate each of the sub-

problems and the necessary solutions are obtained for both Ez and H, polariza-

tions. These are given in terms of symbolic split functions which are then evaluated

for the specific case of a multilayer grounded slab by casting the reflection coeffi-

cient in a form compatible with a GIBC simulation of the slab [Ricoy and Volakis,

1989b]. Results are given and the accuracy of the GIBC simulation is examined

by comparison with known results for homogeneous slabs.

3
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In this section, the generalized scattering matrix formulation (GSMF) is ap-

plied to the geometry given in figure 2a. This consists of a perfectly conducting

half-plane located a distance 6 above the grounded slab, with a perfectly conduct-

ing stub recessed a distance d away from the half-plane edge. To concurrently

treat both the E, and H, polarizations of incidence, the quantities F, and F, are

introduced. They are defined as

G = {E.,
ZoHz,

F_ = {ZoH_,
Ez,

and from Maxwell's equations

E, polarization,

(1)
Hz polarization.

Ez polarization,

(2)
Hz polarization.

jvl OF,

F_:= k Oy (3)

where

-1, E_ polarization,v, = (4)
1, H, polarization.

The individual problems to be considered in the GSMF prescription [Pace and

Mittra, 1964] are as follows:

1. Evaluation of the direct diffracted field by the substructure in figure 2b due

to a plane waive incidence. This field can be expressed as

F_ (¢' ¢°) = fc P_d(¢°s_' ¢°s¢°;_)e-Jk'_'¢°-_)d_ (5)

where Pdd is the spectrum associated with the currents induced on the half

plane and (p, ¢) are the usual cylindrical coordinates of the observation point.
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Additionally, C is the complex contour composed of the directed line segments

[0 - joe,0 - j0], [0 - j0, Tr - j0], [rr - j0, r + joe] in the complex a plane.

2. Evaluation of the field coupled into the waveguide due to a plane wave inci-

dence (figure 2c) as illustrated. We denote the field corresponding to the n th

coupled mode as

F:n (¢o) = C,, (cos ¢o; 5) e -jk'_ (6)

where C,, (cos ¢o; 5) is usually referred to as the coupling coefficient and k_ is

the propagation constant associated with the n th mode.

3. Evaluation of the modal field reflected at the stub (figure 2d). This can be

expressed as I',,,ne ik'_" where I'm,_ is the stub reflection coefficient of the n 'h

mode to the mth mode.

4. Evaluation of the reflected field at the waveguide mouth due to the n th mode

(figure 2e). This can be expressed by Rm,_ (5) e -dk''_, where R,,,n (5) is the

reflection coefficient of the n ta mode to the mta mode.

5. Evaluation of the radiated field attributed to the mta mode incident at the

waveguide mouth (figure 2f). This field can be expressed as

(¢) = ; Pr,, (cosa;5) e-J1'°'¢°'(_'-C')da (7)g.

where P,_ (cos a, 6) is proportional to the spectrum of the currents induced

on the half plane due to the incident rn th mode.
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Accordingly, the scattered field by the recessed stub geometry in figure 26 is
q

given by

t"

F: (¢, ¢o,6,d) = Jc

(8)

where Pmoa (cos a, cos ¢o; 6, d) is associated with the presence of the stub and in-

cludes the contribution of the waveguide modal fields. It can be written in a matrix

form as [Pace and Mittra, 1964]

Pmoa(cosa, cOSCo;6, d) = [P,,, (cosa;6)] T {[I] - [W_,(d)][r_,][W_, (d)][Rm,, (6)]} -1

•[w_. (d)][r_.][W_. (d)][C. (cos¢o;6)] (9)

in which the brackets signify column or square matrices depending on whether one -

or two subscripts appear, respectively. In addition, [I] denotes the identity matrix

and [Win,, (d)] is the modal propagation matrix whose elements are given by

e jknd, m = n
w_.(a) = (lO)

O, rn # n.

To obtain the field scattered by the recessed material slab it is only required to

set d and a to 0 in (8) and (9). In this case, [Win,, (d = 0)] becomes the identity

matrix and [Pro,,] reduces to [I] or -[I] for H, and E, polarizations, respectively.

Thus, P_o,_ becomes

where

[Pad(cos_, cos¢o;6) + P_o_(cos_, cos¢o;6,d)]e-_ko_c°s¢_-_)d_; y > 6

(II)

_*d P._od(cos,_,cos¢o;* = O,d = O)

= [P,_ (cosa)] {[/] - vl[n,_,,]}-' [VlC,, (cos ¢o)]

P,,,,,,_(cos,:,,-co_¢o)

P,,,(¢os_) _°d p., (¢os_; _ = 0)
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_=

c. (cos¢o) dj c. (cos¢o;6 = 0)

Rm. d°J Rm. (_= 0). (12)

Hence, the field scattered by the vertically inhomogeneous recessed slab can be

expressed as

F:(¢,¢o)=/cP_s(coso_,cOS¢o)e-Jk°'¢°*("-¢)da; y>0 (13)

where

P_s (cos a, cos ¢o ) --- Pdd (cos a, COS¢o ) + Pmod (cos a, cos ¢o ). (14 )

The steepest descent method can then be employed to evaluate (13) and obtain

the diffracted field.

3 Plane Wave Diffraction and Mode Coupling

Consider the plane wave

F i = ejk°('_'¢°+_'i_°) (15)

F_ = v, sin ¢oe jk°(_c°'_°+_'i_°) (16)

incident at an angle ¢o upon the structure depicted in figure 2b. In the absence of

the perfectly conducting half-plane, the total fields may be written as (for y > O)

with

F:_ = F'_+ _: (IS)

F: = R (cos ¢o) ejk°(_c°'*°-v'_*°)

F_ = -v_ R (cos ¢o) sin d?oe'ik°(_c°s¢°-v_n¢°)

(19)

(20)
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where R (cos ¢o) denotes the plane wave reflection coefficient of the grounded slab

referred to y = O. For the general case of a plane wave incident at an angle a on a

vertically inhomogeneous ground plane coating, R(A = cos a) may be represented

as

(A) + Vq---fiB (A)] ' (21)

where A (A) and B (A) are even functions of )_, with any branch cuts in A (A) also

appearing in B (A) and vice versa.

The introduction of the perfectly conducting half plane at y = 8 generates an

additional scattered field component F: so that the total fields become

Fz = F","+ F: (22)

F. = F:_ + F: (23)

This scattered field is due to induced currents on the perfectly conducting half

plane, and can thus be represented by an angular spectrum of plane waves. A

suitable representation is [Clemmow, 1951]

fc P (cos a) eJk°6"iU°'e -ik°ae°" (_-°')da
F: - fcQ(cosa) e-Jko'*in" [e -jk°"¢_(*+_') + R(cos(w- a))e-JkoP¢°_( 4'-'_)] dc_

(24)

implying

- fc vx sin a P (cos a) eJk°6_e-Jk°P°_(_-°)da
F; = fvv, sinaQ(cosa)e -jk°''i_'_ [e -jk°"¢'*(*+_') - R(cos(_r- a))e-JkoO¢°'(¢-'_)] da

(25)

in which P (cos a) and Q (cos a) are the unknown spectral functions to be deter-

mined from the boundary conditions at y = 0. These are

y>_,

0<y<t
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(B1) Continuity of the tangential electric fields at y = 6, -o_ < x < cc

(B2) Continuity of the tangential magnetic fields at y = 5, x < 0 and

(B3) Vanishing tangential electric field on the perfectly conducting half plane at y = 6, z > 0

V

and we note that the boundary condition at the slab surface is implicitly taken

into account by the representation (24) and (25).

The application of (B1)-(B3) in conjunction with (24) and (25) is straight-

forward. It results in the set of equations

P (A) = -vlQ (A) [1 - vlR (_)e-J2k°'l"/i:-_-_]. (26)

/_'_ Q(.X)v2(.X)e-Jk°_:'dA=O ; x <0, (27)
(x)

Q =

where we have set A = cos a, Ao = cos ¢o and

1, E. polarization,v2 (a) = 1/v/[_ )_2 H. polarization. (29)

1/Vef_ )_2, E, polarization,
v3(A) = (30)

1, H, polarization.

These are sufficient to obtain a solution for Q (,_) and P (A). However, before

proceeding, it is necessary to rewrite certain terms in the integrands of (27) and

(28) as products of "upper" and "lower" functions, that is, functions free of poles,

zeros, and branch cuts in the upper and lower half )_ planes, respectively. In the
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process of doing so, we introduce the definitions

v2(_) doj vt (_)v; (_) (31)

v3(_) d°J vt (_)v; (_) (32)

1-_,R(_) ¢-2jkoS,/r_ doj n_(_;_)V_(_;_)
L, (A) U, (A) ' (33)

in which

L,_ (A; (5)U,_ (A; (_)-- A (A)(1 + vl e -2Ja°svq-_) + v/1 -- A_B ()_)(1 - vl e-2Jk°_'J_O)

Ls(A)U,(A)= A(A) + x/f - A:B(A). (35)

In these, Ls (A), L,o ()_; 6), v_- (A), v_- (A) are lower functions while U, ()_) ,Uw (A; 6),

v+(A), v+ (A) denote upper functions. We also note that L_,U_ is a function

characteristic to the loaded parallel plate waveguide and its zeros correspond to

modes in the waveguide. On the other hand, L,U, is a function characteristic to the

grounded slab with its zeros corresponding to the surface wave modes supported

by the slab.

Substituting (31)-(35) into (27) and (28), we have

/'_ Q(A)v+(A)v;(A)e-iko*_'dA=O ; x <O, (36)
J---

rio Q(_)v_+ (_)v; (_) L_ (_; _)V_ (_; 6)e__,o._d_=
oo n,()_)V,()_)

-va+ (Ao) v_" (Ao) y/1 - A_e j}°sl_'2"_-_2°L'_(A°;6) U'_(A°;$) e"_k°_x° ((37)
Lo(Ao)U,(Ao) ; x >

These coupled dual integral equations can be solved for the unknown spectra by

examining the analytic properties of the integrands, and the reader is referred to

Clemmow [1951] and Ricoy and Volakis [1989a] for a more explicit description of

10
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this process. From (36) and (37) the unknown spectra are determined to be

Q(A) = 2rjU,,,(A;*)L,(Ao) [ v_(i)v+(A)(i+Ao) J

-v_L_(_;6)L_(_o;_)Ivy+(,\o)_;(_o)fi- _o_]

(38)

Recognizing that Pda (A) = P ()0, we may then set 6 = 0 and substitute for the

polarization dependent functions to obtain

2_rjL,(A) L,()_o) (A + Ao)

L,_ ( )_) L,_ ( Ao) l_/]"-_-fV'f + Ao

27rjL,(A)Ls(Ao) (_ + Ao)

(40)

(41)

where the superscripts e and h refer to the spectra associated with Ez and Hz

polarizations, respectively.

To solve for the field coupled into the region 0 < y < 6, x > 0, (21), (33) and

(38) are substituted into (24) to obtain the integral expression

FZ

oo .+ (_o),; (_o)v/i- _o_ L_(_o;,)g_o_[_,/_-.._,/w]
f-oo2_rjv_(A)v+(A)(A+Ao) Ls(._o) L,(A)U_(A;6)

2jA(_) VIi - A2 + 2B(A)cos(koy_ e-Jk*:_d)_ ;0 < y(___-._

This can be evaluated by closing the path of integration via a semi-infinite contour

in the lower-half _.plane. The sum of the residues of the captured poles then yields

N {F: = __, C,_(Ao) jA(,_,,)
n.,._l sin (k°Yk/-__l-A_ + B (A,0 cos (koyl_/-_-A2_) }e --/k°:_x"

(43)

1t

V



where {A,_} are the zeros of U_ (A;5),

c. (_o)= _2 _°, _v__._¢__.. L_(_o;6) vt (_o)v_(_o)_ - _o_
L.(_,,)i,(_,o)U'(_,,,;6)v; (_.) v_+(_.) (_. + _o)'

(44)

and

dU_
u;(a.; _)= T _:_. (45)

Substituting (29) and (30) into (44) with 6 = 0, we obtain the more explicit forms

for C,_(._o) as

2L_ (Ao) vq'- aov"f- _.

Lo(A,_)L.(Ao)U'_(An) Ao + A,,

2L_ (Ao) v_ + AoV_ + 14

L,(A,_)L,(Ao)U_(A,_) 1o+ A,_

(46)

(47)

for E_ and H. polarizations, respectively.

4 Reflection and Launching of a Waveguide Mode

v

Consider now then n th waveguide mode field

F_,_-- A(An) VI_A _ + B(,_n) COS(koy e jkexAn

F.,_ [v,A(A,_)cos(koy_"_ +jv, B(._,_)v['l- A_sin(koy_-_]

incident at the waveguide opening (figure 2e). The radiated fields due to this

excitation may be again represented by (24) - (25). Subsequent application of the

boundary conditions (B1)-(B3) then yields the dual integral equations (with the

usual transformation to the A plane)

f_ Q(A) v+(A) v;(A) L_(A;8)U_(_;6) e-jko::xdA = 0 ; x >O
L,(_)U,(A)

12

0<y<5

(49)
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where

f_o_Q(_)'+ (_) "; (_)_-J_o_d_
--V4eJkoxAn

; _o_

A(A.) , E. polarizationv4 = (51)
B (A,_) , Hz polarization.

The solution of those proceeds in a manner parallel to the previous case. The

resulting spectra are determined to be

-v,L_(_.)U,(A)v; (:_.) (_2)
Q(A) = 4_rjcos(koS¢l- A_)L.(A.)U_,(A;6)v;()_)v;(A,_)v+ (A)(A+ A,_)

P (A) = VlV4Lw(An)L_o (A; _) (An) V3 (An) (53)

4rj COS (ko5¢1 - A_)L.(A,,)L.(A)v; (A)v; (A,Ov + (A) (_ + A,_)

with L_, L., v ±, etc. as defined in (34), (35) and (31), (32).

Substituting (4), (29), (30), (51) and (33)into (53) and setting 5 = 0 we have

[-A(A,,)] Lw(A) L_(A.) _/T-Z'_x/_ - A. (54)
-- 4_rjLo(A) L.(A.) A+ A.

L_(A)Lw(A,_) _v/i + A,, (55)
P2(A) = B(A.) 4rjL°(A)Lo(A.) A + A,,

corresponding to the spectra for the E. and Hz polarizations, respectively. The

modal field reflected back into the guide may be computed by substituting (52),

(21) and (33) into (24) and employing the usual transformation to the A plane to

obtain

p:
oo L,(A) L° (A.) U_(A; ,5)

2jA(A) ,/T- A_ + 2B(_)cos (ko_=_ _-J_o_dA; 0 < y < _ (56)

As in the case of coupling, this integral can again be evaluated by closing the path

13



of integration in (56) yia a semi-infinitecontour in the lowerhalf A-planeto obtain

(57)

where R._ are the mode reflection coefficients given by

Rm,_ = v4v_ ()_,_) e -jk°61x/'i:'_-_ L_ ()_,_; _)

cos (ko6_/1 - A_)v_- (A._) v_ (.\_) v + (A._) (A._ + A_) L, (Am) L8 (A_) U_ (Am; 6)"

(58)

When 8 is set to zero, this reduces to

A(X_) L_ (_) v/]'- Xmv/_ - _.
R e = - (59)

"_'_ V/T- X_ Ls(._,,,)Lo(X,_)U_()_,,,) X,_ + X,,

L_ (_.) v_ + _._v/_ + _ (60)
n h n = B ( ._n ) L o ( )__ ) L o ( _ ,,) U _ ( )_,.,,) )_,.,, + ._,_

for the Ez and Hz polarizations, respectively.

5 Computation of Spectra for Material Insert in a Per-

fectly Conducting Ground Plane

We now have all the necessary components required for constructing the spectra

Pf, associated with the multilayer slab recessed in a ground plane as defined in (14).

Substituting (40), (46), (54), (59) and (11)into (14) we obtain the E. polarization

result

p;: (A, =

where

L,_(_)L,_(_o)

27rjLs(A)Lo(Ao) [ • )]v/i--U--fIv/V:--_-_° I + _ E _:7:. \A + AmA + ),o ._=1 .=:

(61)

_/1 - A_ Lo(A,,,) L,(A,,)U" (A,_)
(62)

14
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e R -1V_, = {[I].+ [ ,,,,,]}_,_. (63)

For Hz polarization, the spectra may be obtained by substituting (41), (47), (55),

(60) and (11)into (14) to find

Pt,(_,_o)= -L_(_)L_(_o) l,/r-4_lv_-$-_o[127rjL. (_) L, ()_o) )_+ )%

where

NNh(y_% _+_o
m=l n=l

(64)

-n L_ (A_) V_ + A_V_ + I.V_. (65)
V,_n = B(_) L,(_,,,)Lo(£n)U, (_, 0

V_ {[I] [ ,,_1},,,. (66)

Expressions (61) and (64) can now be substituted into (13) and the resulting

integral can be evaluated by the method of steepest descents to yield the far zone

non-uniform diffracted field

e-'_*"P (67)F" (cos ¢, cos ¢o) .._ ei'#4Pro(cos¢,cOS¢o)--_,

where (p, ¢) denote the usual cylindrical coordinates. In (67), F" and Pr, refer

to E_ and Pro in the case of Ez incidence and to ZoH_, P_s for Hz polarization.

Although not apparent, (67) is reciprocal with respect to cos ¢ and cos ¢o, as it

should. We also note that P_. ()_, _o) is a combination of an inhomogeneous solution

(direct diffracted term) and a sum of homogeneous solutions (modal contribution).

It may also be easily shown from the asymptotic behavior of (61) and (64) that

the homogeneous terms do not affect the edge condition.

15
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To obtain numerical results, we must first provide expressions for the multi-

layered grounded slab reflection coefficient (i.e. A()_) and B (_)), as well as the

associated split functions and corresponding complex roots (waveguide modes). To

accomplish these tasks in a simple manner, we consider the general GIBC approx-

imation to R (._). This amounts to setting

NA

=
rt=O

NS

B(,_) = EB.(1-_) ", (68)
n=0

where A,, and Bn axe constants specific to the multilayered slab and are given in

[Ricoy and Volakis, 1989b]. Introducing (68) into (21) yields

.--.Na A. - - -)0 "-'N8 B,_ -)J)"] (69)L.=o (1 )J)" v/1 2_.,,=o (1

[E.=0 A. (1- _)" + vff (1E.=o B. - _)"J

and note that for a given order of approximation, NA and NB are finite and in

general NA = NB or NA = NB + 1, with the order of the condition equal to

Ns = max (2NA, 2Ns + 1). (7o)

To evaluate the split functions L_ ()_; 6) and U_ (._; 5), (68) is substituted into

(34) and by setting 5 = 0 we obtain

2vff - ,_2 N.

E.=o B. (1 - A2),_
L_(_)U_(_) =

2 NA_,=0 An (1 - _:)"

The split functions axe then trivially obtained as

Ez polarization

Hz polarization.

= - -

(7:)

Ez polarization

Hz polarization,

(72)
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where irn_ < 0 and {_,,} are the NA zeros of NBEn=O Bnx n for E, polarization

NA
or _,_=o AnX '_ for H, polarization. It is apparent from (44) and (72) that the

pertinent waveguide mode propagation constants are given by k0v_ - _,,.

In a similar fashion, we may substitute (68) into (35) to obtain

NA NB

Ls ( A) U, (A) __ An _/'I"Z'_ 2"= + _ B.vri--:-'_ _.+,
n=O n=O

NS

=
n=O

__
(73)

(74)

where

Sn

f A,,/2 n is even

/ B(n-1)/2 n is odd,

{%} = {zeros of the polynomial _ _oo (-1 7t}. (75)
I=0

The factorization of (74) is again trivial upon making use of the well known splitting

germaine to the impedance half plane problem [Senior, 1952]. Noting that

1 +. 14Fz-U-A_d_d 1
K+ (A;r/)K_ (A;r/)

(76)

we have,

where

K+ (A; r/) = K_ (-A; r/)

U,(A)=L,(-A)=

K+ (A; r/)-

N$

H.=,K+(A;I/%)

¢1- 1/rfl)K'+ (A; r/)}

-1

(77)

R_(_) > o

R_(_) <_78)

V
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and

K-"+(cos _; r/) = vr_'8-[_ (3_r/2 - a - O)_" Or/2 - a + O)l_
tIs4_(r/2)[1 + v/'2cos (_)] [1 + v/2cos (3'_12;<_:°)]

(79)

In the above Im (_/1- 1/rl 2) < 0, 0 = sin-l(r/),0 < Re(O), and @_ is the Mal-

iuzhinets function [Maliuzhinets, 1958], whose evaluation in algebraic form has

been given in Volakis and Senior [1985]. Whereas the zeros of U_ (A) represent the

waveguide modes, the zeros of Ls (A) (which are the poles of K_) correspond to

the surface waves supported by the material layer. Although not required in this

analysis, these are easily extracted from (78) and (79).

The expressions (68) through (79) provide a complete description of a GIBC

implementation and permit the simulation of any multilayered coating. We remark

that a unique GIBC modeling of a given coating does not exist; in fact one may

employ GIBCs of substantially different character to simulate the same configura-

tion. This point is discussed in the following section and some numerical results

are provided for illustration purposes.

; ae(_ > 0).

7 Numerical Results

In this section GIBC simulations of various material inserts are presented and

compared with exact results available for the case of a single layer. Due to its

greater interest, data is presented only for the H, polarization case. The GIBCs

employed here-in are given in Ricoy and Volakis [1989b]. These are valid for arbi-

trary multilayer coatings and are therefore suited for this application. In particular,

these multilayer GIBCs are synthesized by combining the component-layer GIBCs

18
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in an appropriate manner, pointing to the necessity of understanding single layer

simulations in order to construct multilayer ones.

Figure 3 shows the far zone pattern of a single layer insert (e = 2 - j.0001, # =

1.2, r = .2A) modeled by various "low contrast" GIBCs (i.e. those GIBCs which

improve as the layer thickness or index of refraction decreases). To illustrate their

relative contributions to the far zone pattern, the direct diffraction and modal

contributions have been isolated in figures 3a and 3b, respectively, with the overall

result presented in figure 3c. We note that for this low contrast GIBC, an 8 th order

simulation provides a reasonable approximation to the diffraction pattern.

In Figure 4, both the thickness and the index of refraction have been increased

in a low contrast simulation of a (single layer) material insert with e = 3.5 -

j.0001, # = 2.0, and r = .4A. In contrast to the previous figure we now observe that

a 20th order simulation is required to obtain a converged result. This degradation

with increasing index of refraction proves typical of low contrast simulations and

illustrates the need for other types of GIBCs whose performance improves in this

range of material parameters.

In Figure 5 the same material insert corresponding to the data of figure 4 is

simulated with high contrast GIBC (i.e., a GIBC which improves as the index

of refraction increases or as the layer thickness decreases). In contrast to the

data in figure 4, we now observe that only a second order high contrast GIBC

simulation isrequired to accurately evaluate the far zone scattering. This difference

in performance between the low and high contrast GIBCs stems from the type of

approximation employed in their derivation and the reader is referred to Ricoy

19



and Volakis [1989b] for a more in depth discussion. Some insight on the type of

simulation provided by the low and high contrast GIBCs may be gained through an

examination of the waveguide modes predicted by the different simulations. These

are presented in Tables 1 and 2 for the single layer simulations corresponding to

the data in figures 4 and 5. The exact modes given in the table are generated by

the equation

X,_ = _l_, \kor] ' n = O, 1,2, .... (80)

We observe that as the order of the low contrast simulation is increased, the data

in table 1 reveal that the waveguide modes are "picked up" in a sequential manner

corresponding to increasing n in (80). On the other hand (see table 2), the high

contrast GIBCs pick up the n = 2 exact mode immediately and then "branch

off" to pick up the other modes. The discrepency in pattern convergence between

figures 4 and 5 clearly suggests that the n = 2 mode is the most significant in

terms of diffraction (for this particular configuration). We explain this physically

by noting that the n = 2 mode may be resolved into its constituent rays which

strike the interface at a characteristic angle (say 0_ °d) which is greater than the

critical angle 0 c of the material insert. On the other hand, the n = 0 and n = 1

modes are associated with characteristic angles less than the critical angle. This

implies that upon coupling into the slab, the n = 2 waveguide mode is partially

transmitted into free space while the lower order waveguides modes remain bound.

The above hypothesis may be tested by computing exact solutions in which

the selection of the included waveguide modes parallels the order in which they

are picked up depending on whether a low or high contrast GIBC simulation is

2o
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employed. Figure 6 depicts a high contrast simulation of a single layer having e =

ll-j.0001, # = 7, and r = .4)_. The 10-mode result is a pattern obtained by adding

in modes sequentially as determined from (80), thus paralleling a low contrast

mode selection scheme. On the other hand, the single mode result contains the

contribution of only the n = 7 mode (the mode with 8 m > 0c), thus, paralleling the

high contrast mode selection criteria. This clearly verifies that the most significant

waveguide modes are those that are "visible", i.e. those with 0" > 8%

Finally, figure 7 provides a simulation of a three layer insert composed of two

high contrast layers (e = 11 -j.0001,# = 7, and r = .4)_ and e = 3.5-j.0001,/t =

2.0, and r = .4_) placed beneath a low contrast layer with e = 2 -j.0001, # = 1.2

and r = .2_. These are precisely the layers considered earlier in isolation. One

might, therefore, expect that the order of the GIBC which provided converged

results for the single layer simulation will also provide an equally acceptable sim-

ulation when the slab is part of the multilayer stack. For the case at hand this is

indeed true, as evidenced by the converged 9 th order result. We also remark that

the presence of the two high contrast layers enhances the modal contribution to

the total diffraction when compared with the single layer data given in figures 3b

and 3c.

8 Summary

In summary, the scattering from a vertically inhomogeneous slab recessed in a

ground plane was obtained through application of the generalized scattering matrix

technique in conjunction with the dual integral equation approach. The solution
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was specialized to the case of a multilayered slab simulated with a generalized

impedance boundary condition (GIBC). Results were given for various single layer

inserts and it was seen that in the case of materials having sufficiently high index of

refraction, high contrast GIBC simulations converged more rapidly (with respect

to the order of the GIBC) and performed better than low contrast simulations.

Finally, results were presented for a 1A-thick lossless three-layer insert containing

both high and low contrast layers. It was shown that the simulation converged at

the point predicted by the individual layer simulations, suggesting a method for

constructing multi-layer simulations.

V
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Table Captions

Table 1. Low contrast approximation to waveguide modes for

a layer with e = 3.5 -j.0001, # = 2.0, and r = .4)_. For each low

contrast boundary condition, the three numbers of the column headings

indicate the order of the approximation in thickness T, the order

of the resulting boundary condition, and the total number of modes

(see [aicoy and Volakis, 19895]).

Table 2. High contrast approximation to waveguide modes for

a layer with e = 3.5 -j.0001,/t = 2.0, and r = .4A. For each high

contrast boundary condition, the three numbers of the column headings

indicate the approximation in the index of refraction ,;-1, the

order of the resulting boundary condition, and the total number of modes.

v



v

v

V

iio _,

0

_ _. "-"

_o

°_

0 I-. '-" v

-.-_

',_ oO oO

_!o o. _ ',_ _ ",_ e,i "'_
'_','_'_'_, I "'_ I ",_ I

I I I I t',-. I ",_ I c_

'"_'_ ''_ ''_ I ""_ I

""_"_ "'_"_ I
I I I I

_olNN _

_N

e,i e,i I

I

•_g ._

_'_

.___ "_ o3

g 0

o. o o. ¢q '_
""_i "_, "'_ "_ I

I I I I ¢_

_ _ _.. "_1 _'

_".1 _",.I o0 i ¢_D _:,
¢_ e,i _ J_ I

o. o o. _

I I

t



v

V

Figure Captions

Figure 1. (a) Multilayer slab recessed in PEC groundplane.

(b) Representation of slab as surface with reflection coefficient R.

Figure 2. Illustration of recessed stub geometry (a) and associated

subproblems: (b) direct diffraction, (c) mode coupling, (d) stub reflection,

(e) mode reflection at waveguide mouth, (f) mode launching.

Figure 3. Hz polarization backscatter echo width for a material

insert with r = .2A, e = 2 -j.0001, # = 1.2 modeled by low

contrast GIBCs (See Table 1 for an explanation of the legend entries).

(a) Direct diffraction component. (b) Modal component. (c) Composite.

Figure 4.

Figure 5.

Hz polarization backscatter echo width for a material

insert with r = .4A, e = 3.5 -j.0001, Ft = 2 modeled by low

contrast GIBCs (See Table 1 for an explanation of the legend entries)..

(a) Direct diffraction component. (b) Modal component. (c) Composite.

H, polarization backscatter echo width for a material

insert with r = .4A, e = 3.5 -j.0001,/_ = 2 modeled by high

contrast GIBCs (See Table 2 for an explanation of the legend entries).

(a) Direct diffraction component. (b) Modal component. (c) Composite.

Figure 6. H, polarization backscatter echo width for a material

insert with r = .4A, e = 11.- j.0001,/_ = 7 modeled with high

contrast GIBCs (See Table 2 for an explanation of the legend entries).

Figure 7. Hz polarization backscatter echo width for a three-layer

material insert with (rl = .4A, el = 11.- j.0001, _tl = 7.),

(r2 = .4A, e2 = 3.5 - j.0001, #2 = 2), (r3 = .2A, e3 = 2 - j.0001, #3 = 1.2).

In the legend entry a, b, c(d, e), a and b denote the approximation in _¢-1

of the high contrast layers 1 and 2, c denotes the approximation in r

of the low contrast layer 3, while d is the order of the composite GIBC

and e is the total number of modes.
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Multilayer slab recessed in PEC groundplane.

Representation of slab as surface with reflection

coefficient R.
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Figure 2. Illustration of recessed stub geometry (a) and associated
suproblems: (b) direct diffraction, (c) mode coupling, (d) stub reflection,

(e) mode reflection at waveguide mouth, (f) mode launching.
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(a) Direct diffraction component. (b) Modal component. (c) Composite.
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